Exploratory Analysis of Research Publications With Human Steerable Black-Box Models

This research was supported in part by

Abstract

Not possible to read the constant release of publications and those that came before.

Motivation

Automated approach to synthesize knowledge into model decision preferences.

Problem

Novel approach for sharing “black-box” models, allowing direct adjustment of complex required pipelines.

Value

Visual interaction with external controls.

Main Contributions

- Approach to embed user knowledge and questions into the models of a visual analytic system.
- General Approach to perform back and forward computations in semantic interaction Pipelines.
- Presented approach improves explainability of “black-box” textual pipelines models.
- A prototype system Zexplorer to explore large document collections of research papers.

Direct adjustment of Parameters

Requires deep knowledge about models

- Not intuitive
- Only applicable to linear models

Model Manipulation

Direct adjustment of the visualized elements.

- Automatic changes in the model parameters

External controls

Requires deep knowledge about models

- Not intuitive

Visual Interaction

- Direct adjustment of the visualized elements.
- Automatic changes in the model parameters

Zexplorer Prototype

- Input models are updated by modifying model decision parameters.
- Model needs to be reversible to include new model parameters.

Semantic Interaction Requirements

- Input models are updated by modifying model decision parameters.
- Model needs to be reversible to include new model parameters.

Summary

- Substantial research
- Limitations
- Main Contribution
- Prototype

Main Contribution

A general approach in Semantic Interaction to provide Inverse Computations for black-box models has not been previously discussed in the literature.

Prototype

As an example of use, we apply this approach to share the original conditional model to the user.